NeuralTSNE.Plotter package

Submodules

NeuralTSNE.Plotter.plot module

plot(data: ndarray, labels: ndarray | None, step: int, marker_size: int, alpha: float, are_neural_labels: bool = False, img_file: str | None = None, kwargs: dict | None = None) None[source]View on GitHub

Plot t-SNE results.

Parameters:
  • data (np.ndarray) – t-SNE data to be plotted.

  • labels (np.ndarray, optional) – Labels corresponding to the data points.

  • step (int) – Step size for subsampling the data.

  • marker_size (int) – Marker size for the scatter plot.

  • alpha (float) – Alpha value for transparency in the scatter plot.

  • are_neural_labels (bool, optional) – Flag indicating whether the labels are neural network predictions.

  • img_file (str, optional) – File path to save the plot as an image.

  • **kwargs (dict, optional) – Additional keyword arguments.

Important

The following additional keyword arguments are available:

file_stepint, optional

Step size for subsampling labels. Defaults to 1.

Note

This function plots the t-SNE results with scatter plot, allowing customization of various plot parameters.

plot_from_file(file: str, labels_file: str, columns: List[int], step: int, marker_size: int, alpha: float, are_neural_labels: bool = False) None[source]View on GitHub

Plot t-SNE results from file.

Parameters:
  • file (str) – File path containing t-SNE data.

  • labels_file (str) – File path containing labels data.

  • columns (List[int]) – Column indices to load from the labels file.

  • step (int) – Step size for subsampling the data.

  • marker_size (int) – Marker size for the scatter plot.

  • alpha (float) – Alpha value for transparency in the scatter plot.

  • are_neural_labels (bool, optional) – Flag indicating whether the labels are neural network predictions.

Note

This function reads t-SNE data and labels from files, applies subsampling, and plots the results using the plot function.

Module contents