NeuralTSNE.TSNE.Helpers package
Submodules
NeuralTSNE.TSNE.Helpers.helpers module
- Hbeta(D: Tensor, beta: float) Tuple[Tensor, Tensor] [source]View on GitHub
Calculates entropy and probability distribution based on a distance matrix.
- Parameters:
D (torch.Tensor) – Distance matrix.
beta (float) – Parameter for the computation.
- Returns:
Entropy and probability distribution.
- Return type:
Tuple[torch.Tensor, torch.Tensor]
Note
The function calculates the entropy and probability distribution based on the provided distance matrix (D) and the specified parameter (beta).
- x2p(X: Tensor, perplexity: int, tolerance: float) Tensor [source]View on GitHub
Compute conditional probabilities.
- Parameters:
X (torch.Tensor) – Input data tensor.
perplexity (int) – Perplexity parameter for t-SNE.
tolerance (float) – Tolerance level for convergence.
- Returns:
Conditional probability matrix.
- Return type:
torch.Tensor
- x2p_job(data: Tuple[int, Tensor, Tensor], tolerance: float, max_iterations: int = 50) Tuple[int, Tensor, Tensor, int] [source]View on GitHub
Performs a binary search to find an appropriate value of beta for a given point.
- Parameters:
data (Tuple[int, torch.Tensor, torch.Tensor]) – Tuple containing index, distance matrix, and target entropy.
tolerance (float) – Tolerance level for convergence.
max_iterations (int, optional) – Maximum number of iterations for the binary search. Defaults to 50.
- Returns:
Index, probability distribution, entropy difference, and number of iterations.
- Return type:
Tuple[int, torch.Tensor, torch.Tensor, int]
Note
The function performs a binary search to find an appropriate value of beta for a given point, aiming to match the target entropy.