Coverage for NeuralTSNE/NeuralTSNE/TSNE/tests/fixtures/dimensionality_reduction_fixtures.py: 100%
16 statements
« prev ^ index » next coverage.py v7.8.0, created at 2025-05-18 16:32 +0000
« prev ^ index » next coverage.py v7.8.0, created at 2025-05-18 16:32 +0000
1from unittest.mock import patch
3import pytest
5from NeuralTSNE.TSNE.Modules import DimensionalityReduction
8@pytest.fixture
9def classifier_instance(request, default_parametric_tsne_instance):
10 params = request.param
12 with patch(
13 "NeuralTSNE.TSNE.Modules.dimensionality_reduction.DimensionalityReduction.reset_exaggeration_status"
14 ) as mock_exaggeration_status:
15 yield DimensionalityReduction(
16 tsne=default_parametric_tsne_instance[0], **params
17 ), params | {
18 "tsne": default_parametric_tsne_instance[0]
19 }, mock_exaggeration_status
22@pytest.fixture(params=[None])
23def default_classifier_instance(request, default_parametric_tsne_instance):
24 tsne_params = request.param or {}
25 params = {"shuffle": True, "optimizer": "rmsprop", "lr": 1e-6}
26 tsne_instance, default_tsne_params = default_parametric_tsne_instance
27 for k, v in tsne_params.items():
28 tsne_instance.__dict__[k] = v
29 return DimensionalityReduction(tsne=tsne_instance, **params), {
30 "tsne_params": tsne_params,
31 "default_tsne_params": default_tsne_params,
32 "params": params,
33 }