Coverage for NeuralTSNE/NeuralTSNE/Utils/Preprocessing/Normalizers/tests/test_normalizers.py: 100%
9 statements
« prev ^ index » next coverage.py v7.8.0, created at 2025-05-18 16:32 +0000
« prev ^ index » next coverage.py v7.8.0, created at 2025-05-18 16:32 +0000
1import pytest
2import torch
4from NeuralTSNE.Utils.Preprocessing.Normalizers import normalize_columns
7@pytest.mark.parametrize(
8 "input, expected",
9 [
10 ([1, 2, 10], [0.0, 1 / 9, 1.0]),
11 ([[5, 6, 7], [9, 3, 6]], [[0.0, 1.0, 1.0], [1.0, 0.0, 0.0]]),
12 (
13 [[2, 7, 9], [4, 3, 5], [8, 1, 6]],
14 [[0.0, 1.0, 1.0], [2 / 6, 2 / 6, 0.0], [1.0, 0.0, 1 / 4]],
15 ),
16 ],
17)
18def test_normalize_columns(input, expected):
19 tensor = torch.tensor(input)
20 expected = torch.tensor(expected)
21 result = normalize_columns(tensor)
22 assert torch.allclose(result, expected)